



David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA;<sup>2</sup> Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> <sup>1</sup>HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

## Introduction

## Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

- After surgery such as abdominoplasty, pain is typically most severe within the first 72 hours 1-3
- Adequate management of postoperative pain not only increases patient comfort, but also prevents a cascade of adverse clinical outcomes for patients and increased costs for the health care system<sup>4,5</sup>
- Systemic opioids are often relied upon to manage postoperative pain, increasing the risk of opioid-related adverse events and the potential for drug abuse and addiction, as well as diversion of unused opioids<sup>6-8</sup>
- The normal inflammatory process after acute injury (ie, surgical incision) impairs the ability of local anesthetics to block nociception<sup>9,10</sup>; available local anesthetics, including extended-release formulations, have demonstrated limited effect beyond 12-24 hours<sup>11,12</sup>
- HTX-011's long-acting formulation, using bupivacaine, meloxicam, and proprietary Biochronomer<sup>®</sup> technology, <sup>13</sup> is applied into the wound site to coat the affected tissue during surgery; the active ingredients in HTX-011's unique formulation work synergistically to overcome the challenges of the local inflammatory process, potentiating a reduction in postoperative pain through 72 hours
- Results in subjects undergoing inguinal herniorrhaphy<sup>14</sup> and bunionectomy<sup>15</sup> indicate that HTX-011 significantly reduces pain intensity and the need for rescue opioids; here, we describe the efficacy of HTX-011 in abdominoplasty, a procedure involving larger incisions





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA;<sup>2</sup> Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> <sup>1</sup>HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

- This analysis includes a cohort of subjects participating in a randomized, multicenter, double-blind, placebo- and active-controlled, phase 2 institutional review board-approved clinical trial (clinicaltrials.gov, NCT02689258)
- Subjects were randomly assigned to receive HTX-011 400 mg via a combination of injection and instillation, bupivacaine HCI 100 mg, or saline placebo
- After signing informed consent, subjects were administered study drug during surgery and evaluated postoperatively
  for pain and opioid rescue medication use through 72 hours

### Table 1. Clinical Study Design

#### **ELIGIBILITY**

#### **Key Inclusion Criteria**

- Male or female ≥18 years old
- BMI ≤30 kg/m<sup>2</sup>
- ASA Physical Status classification system category 1 or 2
- Planning to undergo complete abdominoplasty (may involve umbilical repositioning)

### **Key Exclusion Criteria**

- Clinically significant renal (creatinine ≥2× ULN) or hepatic (AST or ALT ≥3× ULN) abnormalities
- Current use of analgesics for a chronic pain condition, use of longacting opioids within 3 days of surgery, or use of any opioids within 24 hours of surgery

#### **END POINTS**

#### Efficacy End Points (assessed through 72 hours)

- AUC of pain intensity score<sup>a</sup>
- Total rescue opioid use (MME)<sup>b</sup>
- Proportion of opioid-free subjects

### Safety End Points

- TEAEs, serious TEAEs
- Vital signs, clinical laboratory evaluations, ECG

ALT, alanine aminotransferase; ASA, American Society of Anesthesiologists; AST, aspartate aminotransferase; AUC, area under the curve; BMI, body mass index; ECG, electrocardiography; MME, intravenous morphine milligram equivalent; TEAE, treatment-emergent adverse event; ULN, upper limit of normal.

<sup>a</sup>Pain intensity was assessed on a visual analog scale (100-mm line anchored by "no pain" to "worst pain imaginable") by measuring the distance from 0 (no pain) to the subject's mark; mean pain scores were adjusted for opioid use using the windowed worst observation carried forward procedure.

bRescue pain medication was available as needed; total rescue opioid medication consumed was converted to MMEs and summed for analysis.





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA;<sup>2</sup> Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> <sup>1</sup>HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

## **Baseline Population Characteristics**

This analysis included a total of 74 females who underwent complete abdominoplasty;
 demographics were comparable across cohorts (Table 2)

| Table 2. Demographics and Baseline Characteristics |                          |                              |                          |  |  |
|----------------------------------------------------|--------------------------|------------------------------|--------------------------|--|--|
|                                                    | HTX-011 400 mg<br>n = 25 | Bupivacaine 100 mg<br>n = 17 | Saline Placebo<br>n = 32 |  |  |
| Mean age, years (SD)                               | 42.6 (8.71)              | 40.6 (6.38)                  | 43.2 (8.53)              |  |  |
| Mean BMI, kg/m² (SD)                               | 26.89 (2.06)             | 26.54 (2.70)                 | 27.34 (1.57)             |  |  |
| Race, n (%)                                        |                          |                              |                          |  |  |
| White                                              | 19 (76.0)                | 13 (76.5)                    | 23 (71.9)                |  |  |
| Black or African American                          | 5 (20.0)                 | 4 (23.5)                     | 9 (28.1)                 |  |  |
| Other                                              | 1 (4.0)                  | 0                            | 0                        |  |  |

BMI, body mass index; SD, standard deviation.





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA;<sup>2</sup> Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> <sup>1</sup>HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

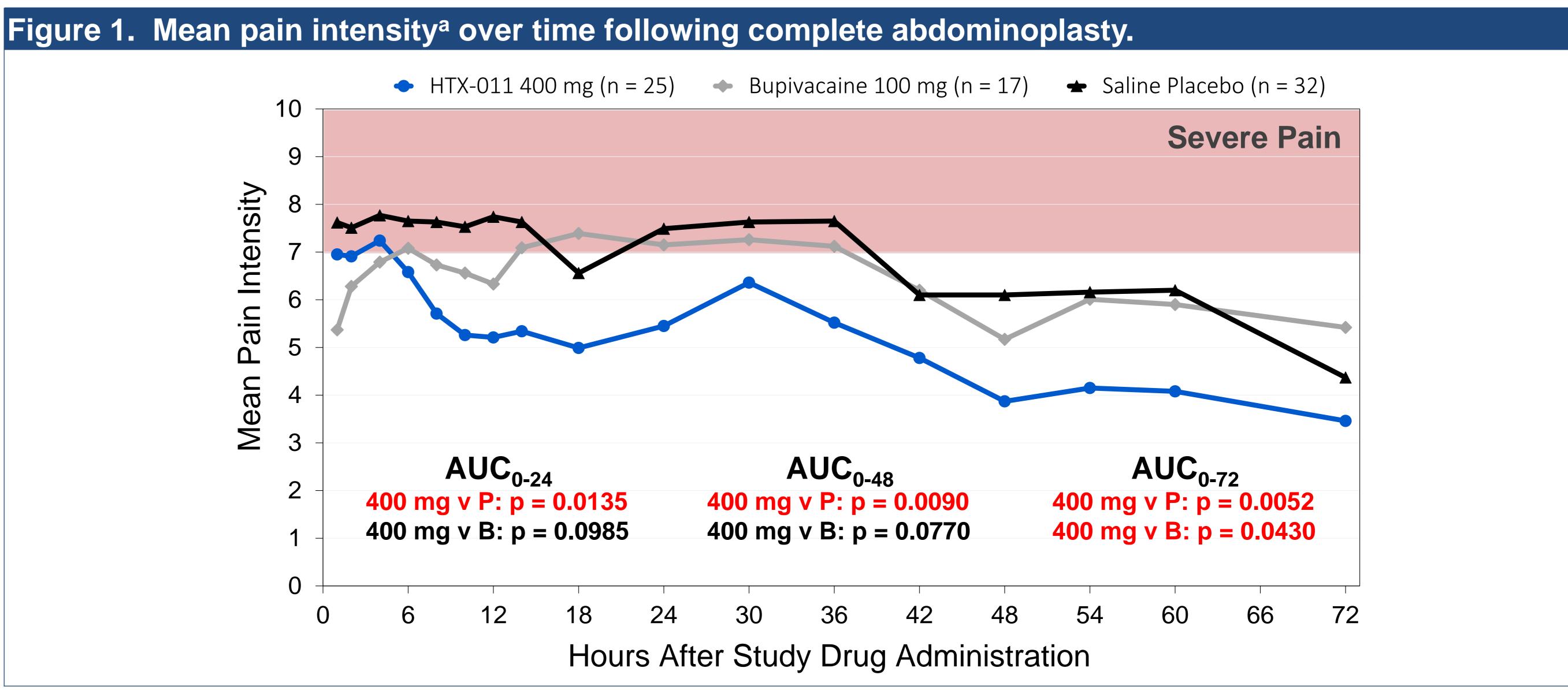
Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use


Results: Safety

Conclusions

References

## Efficacy – Pain Reduction

• Subjects treated with HTX-011 experienced significantly less pain (as measured by AUC of mean pain intensity scores) at all time points through 72 hours compared with subjects who received saline placebo; HTX-011 resulted in significantly less pain compared with bupivacaine during the 0-72 hour window (**Figure 1**)



AUC<sub>0-x</sub>, area under the curve from 0 to x hours after study drug administration; B, bupivacaine; P, saline placebo.

<sup>a</sup>Pain was assessed on a visual analog scale (100-mm line anchored by "no pain" to "worst pain imaginable") by measuring the distance from 0 (no pain) to the subject's mark





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA; 100-years Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> 1HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

## Introduction

## Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

## Efficacy – Postoperative Opioid Rescue Medication Use

- Subjects receiving HTX-011 required significantly less opioid rescue medication through 72 hours than did those receiving bupivacaine or saline placebo (**Figure 2**)
- Treatment with HTX-011 led to a greater percentage of opioidfree subjects on each study day (**Figure 3**), indicating that subjects were able to stop opioid rescue medication sooner after receiving HTX-011

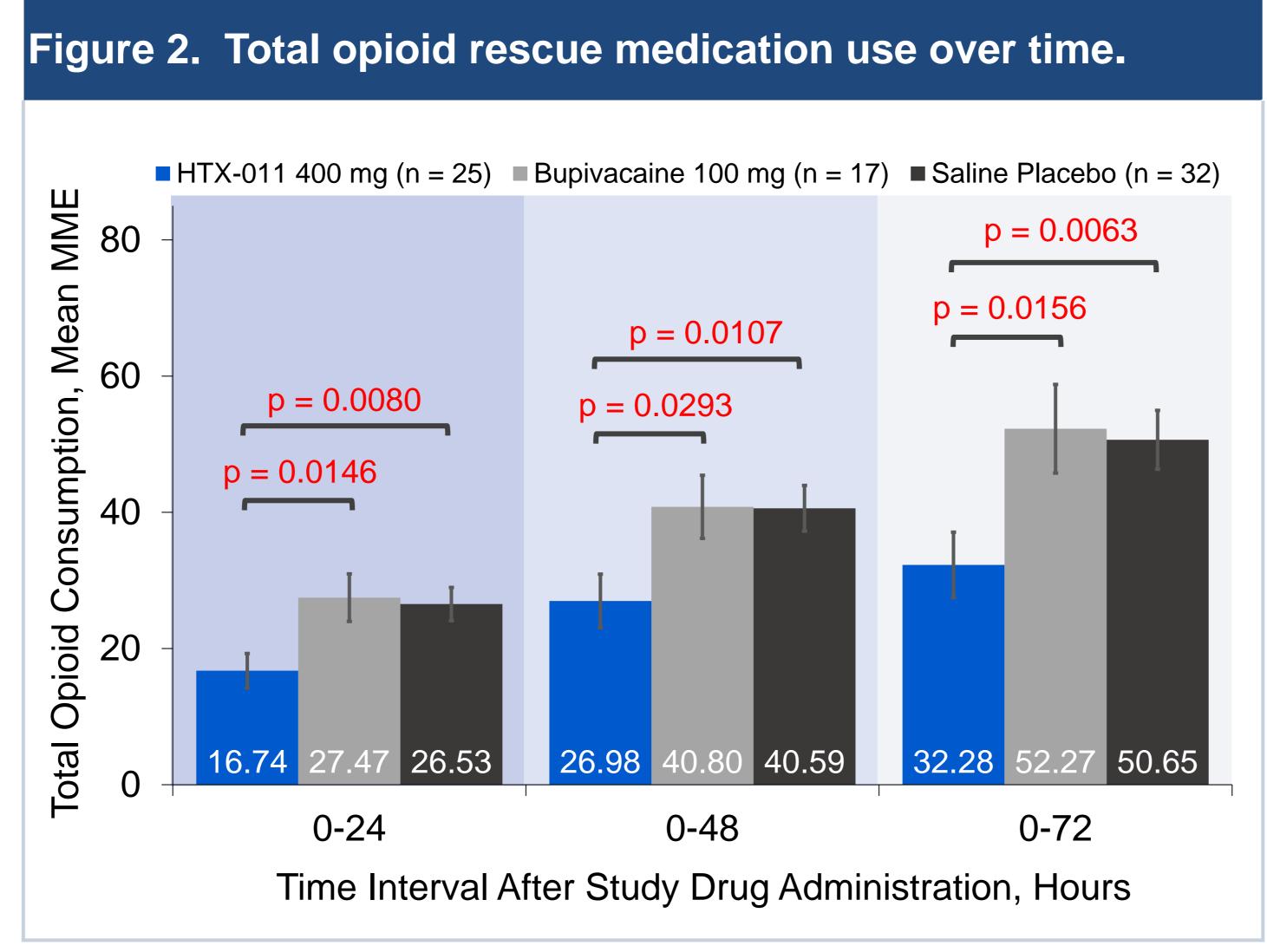
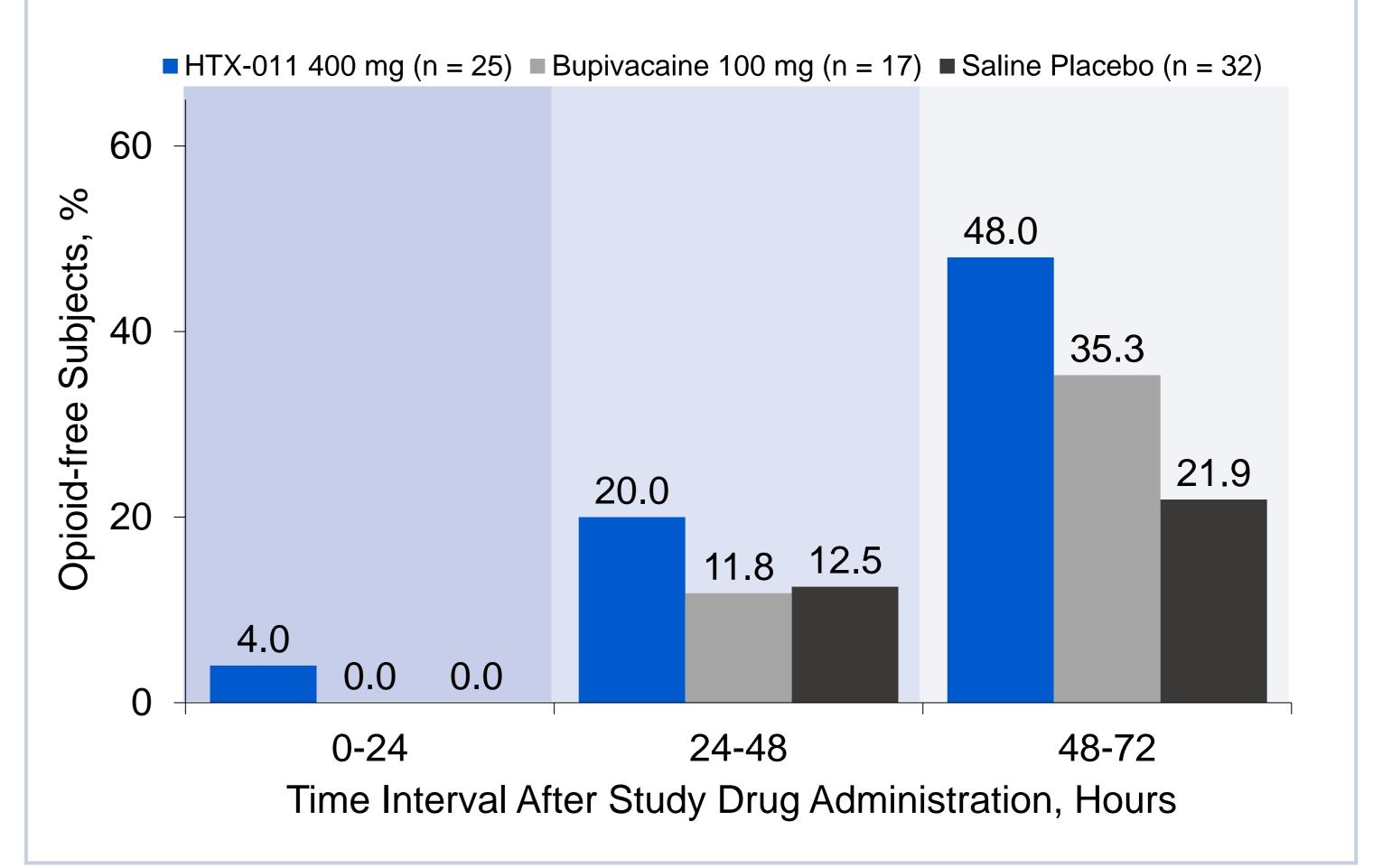




Figure 3. Percentage of subjects who were opioid-free each postoperative day.



MME, intravenous morphine milligram equivalent.





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA; 100+years Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> 1HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

## Safety

- The incidence of adverse events in subjects treated with HTX-011, bupivacaine, and saline placebo are presented in **Table 3**
- Differences in adverse event rates between the treatment groups were not clinically meaningful

| Table 3. Treatment-Emergent Adverse Events Occurring in >2 Subjects in Any Group |                |                    |                |  |
|----------------------------------------------------------------------------------|----------------|--------------------|----------------|--|
|                                                                                  | HTX-011 400 mg | Bupivacaine 100 mg | Saline Placebo |  |
| <b>TEAE</b> , n (%)                                                              | n = 25         | n = 17             | n = 32         |  |
| Any TEAE                                                                         | 20 (80.0)      | 15 (88.2)          | 28 (87.5)      |  |
| Nausea                                                                           | 17 (68.0)      | 12 (70.6)          | 14 (43.8)      |  |
| Constipation                                                                     | 7 (28.0)       | 7 (41.2)           | 10 (31.3)      |  |
| Headache                                                                         | 7 (28.0)       | 2 (11.8)           | 11 (34.4)      |  |
| Pruritus                                                                         | 4 (16.0)       | 2 (11.8)           | 7 (21.9)       |  |
| Vomiting                                                                         | 3 (12.0)       | 1 (5.9)            | 3 (9.4)        |  |
| Wound dehiscence                                                                 | 2 (8.0)        | 2 (11.8)           | 4 (12.5)       |  |
| Dizziness                                                                        | 2 (8.0)        | 4 (23.5)           | 3 (9.4)        |  |
| Hypotension                                                                      | 2 (8.0)        | 1 (5.9)            | 3 (9.4)        |  |
| Seroma                                                                           | 1 (4.0)        | 0                  | 3 (9.4)        |  |
| Pyrexia                                                                          | 0              | 2 (11.8)           | 3 (9.4)        |  |

TEAE, treatment-emergent adverse event.





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA; 100+years Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> 1HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

- The unique formulation of HTX-011 was well tolerated and significantly reduced postoperative pain intensity through 72 hours compared with saline placebo, and during the 0-72 hour window compared with bupivacaine
- HTX-011 significantly reduced the need for opioid rescue medication through 72 hours compared with bupivacaine and placebo
- Taken with previous reports in herniorrhaphy<sup>14</sup> and bunionectomy,<sup>15</sup> these abdominoplasty data suggest that HTX-011 is well tolerated and effective across a range of surgical models with different incision sizes
- HTX-011 may represent a significant advance in postoperative pain management





David Leiman, MD;<sup>1</sup> Harold S. Minkowitz, MD;<sup>1</sup> Sanjay S. Patel, PhD;<sup>2</sup> Guy Boccia;<sup>2</sup> Alice Chu, MA; 100-years Linda Heiner;<sup>2</sup> Mary Rose Keller;<sup>2</sup> Erol Onel, MD;<sup>2</sup> Tom Ottoboni, PhD;<sup>2</sup> Barry Quart, PharmD<sup>2</sup> 1HD Research Corp., Houston, TX; <sup>2</sup>Heron Therapeutics, San Diego, CA

Introduction

Methods

Results:
Baseline Characteristics

Results: Pain Reduction

Results: Opioid Use

Results: Safety

Conclusions

References

- 1. Lynch EP et al. *Anesth Analg*. 1997;85(1):117-123.
- 2. Svensson I et al. *J Pain Symptom Manage*. 2000;20(3):193-201.
- 3. Matarasso A et al. Clin Plast Surg. 2014;41(4):655-672.
- 4. Morrison RS et al. Pain. 2003;103(3):303-311.
- 5. Strassels SA et al. Acute Pain. 2004;6(3):95-104.
- 6. Ramachandran SK et al. J Clin Anesthesia. 2011;23(3):207-213.
- 7. Kessler ER et al. *Pharmacother*. 2013;33(4):383-391.
- 8. Alam A et al. Arch Intern Med. 2012;172(5):425-430.
- 9. Ueno et al. *J Inflamm Res.* 2008;1:41-48.
- 10. Becker DE, Reed KL. *Anesth Prog.* 2006;53(3):98-108.
- 11. Miller RD et al. Miller's Anesthesia. Philadelphia, PA: Elsevier Health Sciences; 2014.
- 12. Golf M et al. Adv Ther. 2011;28(9):776-788.
- 13. Ottoboni T et al. *J Exp Pharmacol*. 2014;6:15-21.
- 14. Winkle P et al. Local administration of HTX-011, a long-acting Biochronomer-based bupivacaine/meloxicam combination, in hernia repair: preliminary results of an interim analysis. Presented at: PAINWeek 2016; September 6-10, 2016; Las Vegas, NV.
- 15. Viscusi ER et al. HTX-011, a Proprietary, Unique, Long-Acting Local Anesthetic, Reduces Acute Postoperative Pain Intensity and Opioid Consumption Following Bunionectomy. Presented at: the American College of Surgeons Clinical Congress; October 22-26, 2017; San Diego, CA. Abstract 72134.